Varieties of Uniserial Representations Iv. Kinship to Geometric Quotients

نویسنده

  • KLAUS BONGARTZ
چکیده

Let Λ be a finite dimensional algebra over an algebraically closed field, and S a finite sequence of simple left Λ-modules. Quasiprojective subvarieties of Grassmannians, distinguished by accessible affine open covers, were introduced by the authors for use in classifying the uniserial representations of Λ having sequence S of consecutive composition factors. Our principal objectives here are threefold: One is to prove these varieties to be ‘good approximations’—in a sense to be made precise—to geometric quotients of the (very large) classical affine varieties Mod-Uni(S) parametrizing the pertinent uniserial representations, modulo the usual conjugation action of the general linear group. We show that, to some extent, this fills the information gap left open by the frequent non-existence of such quotients. A second goal is that of facilitating the transfer of information among the ‘host’ varieties into which the considered quasi-projective, respectively affine, uniserial varieties are embedded. For that purpose, a general correspondence is established, between Grassmannian varieties of submodules of a projective module P on one hand, and classical varieties of factor modules of P on the other. Our findings are applied towards the third objective, concerning the existence of geometric quotients. The main results are then exploited in a representation-theoretic context: Among other consequences, they yield a geometric characterization of the algebras of finite uniserial type which supplements existing descriptions, but is cleaner and more readily checkable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Two Geometric

Ginzburg and Nakajima have given two different geometric constructions of quotients of the universal enveloping algebra of sln and its irre-ducible finite-dimensional highest weight representations using the convolution product in the Borel-Moore homology of flag varieties and quiver varieties respectively. The purpose of this paper is to explain the precise relationship between the two constru...

متن کامل

ar X iv : 0 90 2 . 15 64 v 2 [ m at h . A G ] 9 M ar 2 00 9 A 1 - homotopy groups , excision , and solvable quotients

We study some properties of A-homotopy groups: geometric interpretations of connectivity, excision results, and a re-interpretation of quotients by free actions of connected solvable groups in terms of covering spaces in the sense of A-homotopy theory. These concepts and results are well-suited to the study of certain quotients via geometric invariant theory. As a case study in the geometry of ...

متن کامل

ar X iv : 0 80 4 . 32 25 v 2 [ m at h . SG ] 3 J ul 2 00 9 STABILITY FUNCTIONS

In this article we discuss the role of stability functions in geometric invariant theory and apply stability function techniques to various types of asymptotic problems in the Kähler geometry of GIT quotients. We discuss several particular classes of examples, namely, toric varieties, spherical varieties and the symplectic version of quiver varieties.

متن کامل

Homogeneous Coordinates and Quotient Presentations for Toric Varieties

Generalizing cones over projective toric varieties, we present arbitrary toric varieties as quotients of quasiaffine toric varieties. Such quotient presentations correspond to groups of Weil divisors generating the topology. Groups comprising Cartier divisors define free quotients, whereas Q-Cartier divisors define geometric quotients. Each quotient presentation yields homogeneous coordinates. ...

متن کامل

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001